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XII. The Variation Principle and Perturbation Theory

There are many connections between the variation wmethod and
perturbation theory. In the succeeding sections we will be concerned
in the main with using the variational method to approximate soclutions

with the closel

of the perturbati
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lated problem of the perturbation anzlysis of optimal trial functions

and energies. However the variation principle can play other voles.

it is an immediate covwequence of the variation

- . EY S ;
principle that ¥ ~ is of order V W2 and we have the well known
. » TS
result that to calculate the energy through order ¥ one needs to

know the wave function only through order 7)N‘. Thig theorem is
usually'Pmmmw by clever rearrangement of the perturbation equations.
In Sec. XIV. we will present a generalization of this theorem.

In this section we wish to discuss yet another kind of connection;
one which, so to speak, goes from perturbation theory to a variational
principle rather than the other way round. The point is simply the
following. The mark of a wvariational principle is that it leads to
errors of second orvder in the quantity to be calculated {we have been
concentrating on the energy). This then suggests that if using per-
turbation theory we can give a formula for calculating a quantity

correct through first order, i.e., so that the err
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order, then from this formula we should be able to infer a variation

principle for the quantity in question. (This also suggests that
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starting from the results of higher order perturbation theory one
could infer "super-variation principles’. See for example Kikuta,
Prog. Theo. Phys. 1210 (1954), 14, 457 (1955). See also Koster and
Brooks, J. Math. Phys. 5, 169 (1954).)

Rather than discussing in detail how to carry out this program
we will simply illustrate the point by a few examples, others will
occur in later sections. (For a general discussion see Pomraning,

J. Math. Phys. 8, 149 (1967) and references given there.) TFirst let
us consider the energy itself., Then given a zeroc crder wave function

=\

0) L . alo
\4}“/ ; a zero order energy © , and a zero order Hamiltonian § )

H_(,b) \L%-\r,7‘): c o) %)w’)

one has the familiar result that through first order the energy for a

Hamiltonian %* is given by

3
E;\'o\ N (*60'7) g - B W)
(:\1{'\0’7) QW™

which we can write as

(y (oﬁ) W) / (WD) W)

= )
In this last form all explicit reference to E#UO has disappeared.
Further it is a formula which is correct through first order in the

') AR
error in Uév , whatever k§\7> may be. Hence we can infer that
~o e i
0 oL 1 m‘:’ (A I
C4) W 9 0w 9D

will yield a variational approximation to the energy, and we are back

where we started from.
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To give ancther example, let us use perturbation theory to derive

a variation principle for a Green'

L

n's function. Using

£

n operator nota-
tion one has

(X11-2)

We now vewrite {1 as

,’i £ i3] 5 ‘«1“ H g
WET e o e [
[ ST -ty R 4y = oy 5 M A
Then mulitiply > arou Dy e =

we have

or, correct through first ovder, the Green's function is given by

(‘y\g;}rw (9 (9 w) {~ (XI1-3)

Following the pattern in the previous case, we now elminate explicit

W) . ) . ,
reference to %Y 7 . ‘To do this we use (2) to write (3) as

7y " i ei/y\ # ‘(V 1 i Y e %@7
EANYS V) PO (- ¥y

whence, since (s is arbitravy, we infer that
[ . *;\J
e i T A~ R o
@ L T e vy ? U"

- . . o
furnishes a stationary approximation Lo &
yﬁ i\\v
/ . ; . . P
Problem: Prove this. ni:

1 and show
that this quantity equals nlus terms of order I {(note

A

Write Lo & VT4
O

that (lp-eye) ). Ve
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Finally we give an example from scattering theory. We consider the

scattering of a particle of mass |
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field
and confine attention to a single partial wave.
. . . " 4
known formula whicl i

§ g s ¢ . -
h gives 0 times the tangent o

order when we chan

ge the potential

are Co
the zerg

Vi v LQEQ} ; £
¥ A e RN G
;} T ﬁ;@"jv\‘iﬂ/ Cw {\,‘C:.“‘i Miﬁ“{"\/}
{(X11-6}
We v b - cwnlicdr vafarar ; “J‘Uﬁ?} s TN s 2
W an now eliminate explicit rvefevence to Uy in {6} by use of
= o 3 ~ 4 P
{%%%ﬂ" 5:342@ =g  and hence infer that
% %) | ~
i . i %, = A §
%L G, 6 ,iir 2 k Ak (Q.E K‘%E s
. f‘\;
e o , . ) ~1 8
will furnish a variational approximaticn to &~ B S , the

being

S

¥

variation equal to ¥
parts, can be w 3 i fo that o
found for bound st e

one sets the f

t, after am

at i
esul
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. XITI.. Perturbation Analysis of the Variational Method

Let us suppose that the Hamiltonian takes the form
. R, 4~
W = %W‘),A\g <~ Ir J (X111-1)

with %jﬂ) and t%AN) independent of the real parameter v , and that
4 /s

we are interested in exhibiting W and £ as power series in V  (we

will assume without further comment that this is possible). One way to

imply to carry out the compiete calculation

(v
fomnet

.derive such expangions is.

S

and then to expsnd the results. The other approach, and the one which

we wish to explore in thi

w
)

section, is to try to produce the successive
terms in the series by an iterative procedure,

u s

While the second approach is the one which has usually been
followed in say calculating the response to extermal fields,
or in the YYg expansion, in recent years there has been a
trend the other way. Thus to calculate the static polariza-.
bility, instead of directly calculating the second order
energy, one calculates the total energy in a series of weak
fields and fits'the results to a polynomial. See for example
papers by Hurst and collaborators, Phys. Rev. 167, 1 (1968),
. Cohen and Roothaan, J. Chem. Phys., 43, 534 (1965), and Pople
\;\ et. al., J. Chem. Phys. 49, 2960 (1968). 4/

Before turning to this however, let us say a few words about the

. PPN S 8 L) e ;
various possibilities for %( and v that one encounters in
applications. First of all %%u»' will usually be either the "accurate"

Hamiltonian for an isolated system or some approximation to it. 1In
saying this we qualified'the“word accurate by quotation marks because
it is a relative term. Thus for an isolated atom or a molecule, under
many circumstances the fixed nucleus, non-relativistic {(no magnetic

effects) Hamiltonian, is the standard of accuracy, with corrections
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adequately taken care of by first order perturbation theory. 1In other
circumstances, particularly for heavy elements, this will not be the
case and relativistic effects must be treated more accurately.

\0) )

i k% is an accurate Hamiltonian then Ay will usually

represent the effect of an external field, (i.e., the sort of thing
: Y e B

we have elsewhere included in fﬂ .) On the other haud if is

; LRI .
approximate then v might represent the effect of an external field
but it might also be the difference between the "exacii” and approximetie
Hamiltonians of the ioslated system, i.e., the WV of earlier
discussions. Also it might be a quantity for which we weould like to
calculate an accurate expectation value and which using an interchange
theorem, we have introduced as a ficticious perturbation (i.e., again a
quantity of the fmvv type).

. 3"

For complete generality then we really should replace by a
sum of terms (including terms of different orders), however since the
modification in the formalism which this introduces should be quite
obvious, at least in low orders, we will forgo complicating the notation

at this point,

0 =
: Let us now return to our problem =-=- the expansion of % and E
ﬂ&)"j“ » LaATIALAY
We will confine our attentionVto situations in which the space of trial

(\J
functions ¥ is independent of & since this is often the case in
e == —

practice. If we denote the collection of parameters and/or functions
~J

which label the members of the space by Ov , and if we denote a

o
“typical trial function by @ko‘- ), then this means that

A
Q = & (o) (XTLT-2)
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§ ~ y
will depend on %/ only because the @, depend on Vv . (As we have seen
N
this also means that ¥ will satisfy the Hellmann~Feynman theorem for
O® =+ and, generalizing to the case of several perturbations, that
interchange theorems will be satisfied.) 1In accord with our program

then we write

14N s g — ™~ )
G §9% v ey v e o |
(X111-3)
e o= Y, ﬁ: NEVASE T T
b % (XT1I-4)

s . ~§ 3 s ; .7
Further we will assume that €. can®be expanded in a power series in+

ca

. ey \ h oy e

= 0¥ yvool Y 2 e - (R111=5)

This is sufficient to yvield (3) and (4) but not necessary. However
we assume it because it simplifies the discussion. We will comment on
more general possibilities at the end of this section,
o , ) A,
From our assumption that Y% depends on VY only because G does

7
it then follow that

:)W”\ &‘M@'j (XIT1-6)
(1) B@)> Ew}
T ) ‘ (X1T1-7)
ey SPRAATY

&
et

;Lg“@) {(X111-8)

i‘)

NG 2%\ L (“3’2’@) i

B
etc.
Now a point of motation. The formulae (6) = (8} are quite emplicit

tnd o
(except for our use of the collective symbol %, . Thus if the O are a
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set of parameters then the r.h.s. of (7) is short hand forZ@ ) '52\2)
&= "")

However for compactness we will replace(h >~ Moy (17’ wetc., by

~
W)g\ 2.
Bagy

/MV? 0 ‘}2/ N etc. which we will then further abbreviate by

etc. Thus we have

;A(» L\? U(w?

(NP W W S\
& - L.y e v E‘i PO ST oy Yoo @riz-9)

This more compact notation should cause no confusion. However, one

) : » 4g)
must keep in mind that some members of the @,°° wmay be zero. (Con-
gider for example the Stark effect for a closed shell atom and let one

~
of the & measure the amount of ¥ state.) Note also that if there

2

~ o
is no distinction between ¥ and O. (c.f. the S-limit in Helium)
A Q‘t‘»‘) I

then ~ 4, = On,.
(\' N
Finally we need oY% . We now remark that we can explore the &

o~ v
in the neighborhood of O simply by making arbitrary changes in &

alone. Thus it will be sufficient to consider

54~ 3% st

/5 KMV)

2 .o “ap) e . -y Y ; ;
with $o. arbitrary within the set (i.e. if CL'V is an arbitrary

oag) o .
number 3@ is an arbitrary number; if 8:1, is an arbitrary function

Ay
of certain variables, then sa'y ¢ is an arbitrary function of those

A
variables ). We now expand §% in powers of V to find, using (9).

~ A AT N A vy o
6%‘:’ L%) 63\-0 P \S‘J\i) O. éa\w)

=

(\,\0 (\\v)( (\:b L ™ Mg
~ [ & * C“ PIEYS (RTII-10}"
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B RPN fovy ey
= 9% s vEY T vy EN T L~ (XTTT-113

If we now substitute these formulae into the basic equation of

the variational method, the results will be in the form of power

4

in v equal to zero. B8ince¥ is arbitrary this means that the co-

efficients of each power of % must vanish separately. More specifi-

cally let us write the eguations
.~
g =0 (XITE-32)

. where
AN A B .
S-S (e By 3 =10 ‘
(X117-13)
i~
If now we dnsert the expansions, ¥ will assume the form
Cd i
i};” . f; ;“ﬁ A \‘m? .
JoEoe Voo (KII1-14)
\7@\,2,‘ ‘} A% 7/
From which we will derive the sequence of equatione
i - &g
o D5y XiIT=15)
E,\?:;} i)ﬂ ¥ oty L S <¢ Lt}

and

(XITI~16)

~
!
o
[
P

i

[
—

N
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" N A\\" ‘ ' X
§w9. B Ly e7) % )+ L\i\: oL gy ) (XIIT-18)
bW ogm gy )

o5 i 7 B g 5 . g} 'ﬁ,) " > Ay NI
A s A 1o _ (s WI_ B g
T 2§ ww_g§T) F rT e )

A
i T
r\*\‘s C\B) A h) (}e‘_'\‘;) o h’\) \4{» y
L ,bmw e Dr Oy

A

3 Sy AT ‘am (‘m*\.
£ O - gD — 8T Oy

ere.
, o : Loty
The equations (15) and (16) now enable us to determine the &
X ey _ f A A
and the & .~ recursively. Thus from 63w10 5 I@’-L’D we will
A A
determine aﬁﬁ Y . Then §:§h} yields, using (18), (11)
Cand (10). |
o - S A 1n Hﬂ Avn A )] i
o
I‘F ( \97 \;\T) Gﬁ'}‘”"‘ A ')'T)) \_‘/\’\7“)} "\‘A (4”4 g (XII I - 19)
/ﬁ“kﬁ) dnny
which together with 7 ‘'=p will serve to determine the O and
A\\)

=

s ete., ete,

This kind of approach has been systematically pursued by J. N.

, ! oy
~ Silverman and collaborators for cases in which the (A are parameters..

’(SéévPHYSf Rev, 162, 1175 (1967), and further references there.) How-

ever, it is implicit hlmaHYVappliéations of perturbation theory within

the variational method.
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it should be noted however that the assumption that 41 can be
expanded in integral powers of v does not require that O¢ can also
. 7 Lo ; §~;
be so expanded. For example Ov might involve ¥V , and an example of
this sort is mentioned in the next section. Thus our discussion is nok

completely general. However, the general pattern is corvect. Thus

i
W
N

A~
we will have W of the general form (11) and hence one will Lave
P S

o o ) Py 3 Cruvid
and (16). However, the detailed formulae for the % and the o™y as

siven by {(9) and {10) will not apply.
g v (9) v pply

Problem: For V¥V we could evidently equally well. vary

z by making changes ouly in & Y2 say. Show that use of
o Vs & b G

i~ .
S R T Sk
(}""5 om0 — G
%
. B&Jﬂ

“arvbitrary Yields the same equations as above 7

Sov
Tn our discussionYwe have assumed the space of trial functions to

- be indepgg@gnt of Vo, It is also of interest to discuss one particular
sort of sitgation in which this is not the case., It arises naturally
for example in extending restricted Hartree-Fock to P edv Lo external
fields. Also it arises in a more general connection which we will
discuss in Sec. XV.

Namely -suppose thsat

- £ - (o - ;

o ey o .

N oW o™ V)

MR A TR SRSV - (X111-20)

o é , . .
where - . is a given function (usually derived from some set of trial
A

. AR Py N o

functions via .~ & J  *®  but not necessarily) and where the NORLC

.contain arbitrary;parameterg,and/or functions whose optimal values we

require fo be independent of ;f . (Note that whatever the scurce of

N ——




91
Aw) X@”ﬁ
in notation is consistent since evidently for V=0 the optimal
3 Awy

X in the present context is )

Varying these quantities we will then evidently be led again to

L Mgl
equations of the form (15) except that now 5% 21w and for the

7 i"ﬂ . : . N .
> we as. vet have no formulae like {15):; for the woment
y ke 5
they are simply the vaviations of D% and nothing more. It is now

%&%
important to nbtiée that these equations now impose vestrictions on

thé kinds of varviational pavamaters and/or functions we cac imbed in
Cowd) 7 - » AR
the < 4 Thus considér the equation &V =D . It vields

o e AT ey F\wi Lo s ; SRS
{Aﬁk%w>@ L W / 7 Tlate. = O XITI-21Y
- s
Ef‘;;f‘*‘ {oay . . Sw) s
and®tells us that 8% must be an allowed variation of W . Turning
&‘“" Choqnly
-noy to &J {Vl%t us suppose for generality that g involves not
L
C;?gv o} Ty
only new quantltleb but aisoﬂthe O imbedded in <% . Then
u}y‘ﬂ.&,\w}a
. vy O T P My
6N T BN g0l BET e
/5 Q\n":‘a *éé(&:\v\j

. - I © Coya
; B g 3 kw\; . ° N g ﬁ’v‘; s N
whence, since the 0,77 and ¢ ave independent, &F =g implies

{ ( %‘Qw} BT @y (e Eey ¥ mj‘ (XTT1-22)
and )
C bj;w & QMJ LS m) Tl =0 (XTT1-23)
Eq. (24) then requires that ﬂvﬁ§g§i be an allowed wariation of

&a*ﬁ? (’L?‘ f‘zb«) g LoV
while (22) Wwarg o mss UL regkdts o DY ISR
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)
’/;b have taken the point of -view that 4;0 is given and tha:\§
therefore (21) implies restrictions on q; ¢, However in
some cases one might want to con31der the\yh) As given, ”
\\yhence (21) ylelds requirements on qﬂ9>.

1 -
P'\u\)-‘-’“*- Cwby 1200 \«»ém LV‘B\.Q» 23 o.NS Wcut;\t@w
Cuw&lqlﬂ—“*“’i Qq&V\& \\\\ﬁ“ﬂ 9\’\9"‘) Nl\ w3 wa o».UL&\A éL/\-iL
dﬂ_ﬂww F&-VH Q;..LUM‘IV\GV’ L\NW\ L g™ Haa H,\a.:u (@W \\'
241 C kaﬁyﬁfI;J %ﬂf GAD%ﬁu\V&h
XIV: A Genelal W’ ,J;Th?9r¢m iy

As we have discussed, if one knows an exact eigenfunction cor-
) Vi
rectly through order 1{ , then one can calculate the exact eigenvalue

PEER
correctly through order Vo - . We now want to exhibit a similar
theorem within the context of the variational method.

. For generality we will allow the trial functions to depend

explicitly onV . Thus

C\F = C\?*LSC 7 : (XIV-1)
s *_ 5 '

Now consider the function “P defined‘by

b3 , ST
 \¥ g ¢>_L;£‘) b{)>::: . + poss;bly terms of order
- ' (X1V-2)
where
% iy = Wi | ‘
QA 0= ;() C\/'l“,)1~{j ¥ (XIV-3)
% A
Thus the implicit v dependence of W differs from that of ¢ by
WA
terms of order VY , while its expllc1t 14 dependence must be the

Gl By T lh+\
same at least to ordelv .

.. We _now define:lhﬁ

: a8
= el e e (XIV-4)
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Then one readily finds from
* ' % X
é = (—‘L)Wi)/(*)'\")

A

0 Y
e= (9 /C«Q,\H

That
i nNA 0\
~e= 1 (a,m-8% r o683} f3 3
) ) (\%)
(XVI-5)
n
+ (D C\;;«u:;‘}&}/,;{\ o
4 ()
Now from (2) and (3) it follows that
’ 7 M
Z& = [t{ _~% > By SR WL VN Y
ST S Dl ) (X1V-6)
' dot
Th%n we nofé that
£ AL s
Ay = (G-
~
_ D
N wi e
‘ig.(i) of order V . 80 that the last termi in (5) is of ovder W 5
A

‘and (ii)-is an allowed wvariation of ¥ 5o that it makes no contribu-

tion to the sum of . the first two terms in (5). Thus it follows that

A i
even if G%f~E§7 W is of qrder zero, still
¥ 0~
- "
E- &= Olv ’W)‘j (XIV-7)
')
Thus if the (A involve onmly integral power of v we have the

£~ 0
result that if we know & correctly through order V and if we

.. include any explicit 3/ dependence correctly at least through order

o\ & R
Vv " then we can calculate & correctly through order V "

In particular ‘then-if. the.-space of trial functions is independent of
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: . . 2w
v we have a direct generalization of the V theorem., Of
A 53 ) .
course if (i}~ E:} o= Q{J&i’s) where 35D we can weaken
the additional requirement on the explicit V  dependence. Namely

to derive (7) we need only that

5, )
Y- SR . i P e
_ A O L IR A LTS }
%\_%J = Ci{:& (: [ y 7 } iy ?@%éghwﬁf ’{-é/\"d\:\‘s %é U(, \j {‘4\‘]‘.‘“‘. ,‘8}
where T = 2W+2-$ or %1 , whichever is larger.

A ,
If the O say involve half integral powers of vV  (we will give

L
an-example in & moment) then (3) requires thar we know & correctly

. vaﬁﬁ, , ) :
through order . However, in some cases accuracy through order

%

N will still suf

4
i

ot
h
o
-
6]
o
o
=
[$4]
[

S

suppose we replace (3} by

A SRR
1o, f ANV
- o= 0LV /

s

Then instead of (6% we

. A i R
A L. 18 )
A8 AN

i AL
Now as it stands &N locks ‘to be of order ¢ but if, as we

PEE I S (”‘ }‘L N Kﬂ
. assume QK and W can in integral powers of V , &%

muskt-dn-fact be of order

4

Thus the last term in (5} is again
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(NN S . = o -
«0f order v . Turning to the first two terms, LAY is still an

i
allowed variation, so that only the OLV ) part of A contribr.

i : ; ; s g 2
utes. This contribution will then be of order V f

(XIV-9)

(o- ) = 0w

, i )
w. .. As-a case in point consider the ground state of Helium withv¥
Y

«sthe electron-electron interaction and ‘¢ that linear combinatiocn of

G

v a
§Kd,gYﬁE::v .and ip’ @K;P% :, which yields a spin singlet. Then or

finds (see Hibbert

4~

roc. Phys. Soc. 91, 33 (1967) and veferences

7

there. See also Hibber

rt, Proc. Phys. Soc. 1, B1048 (1%968) for a
similar method applied to Li. For some reason in these papers the
(‘\
method is referred to as URHF) that although \{ can be expanded in
' v o & N 5
_integral powers of V=l | the O , namely g and A involve YW |

o~ ‘ = g L
However Y% is exact in the limit V=99 C%~¥oﬂ§ and hence {(9) is

satisfied. Thus in this case one does find that knowing the orbitals
M A

L

correctly through order 'V  enables one to calculate &

1w
through order Y

correctly

’/fEroblem:

povers

(N?

Give an analogous discussion for other fractional

inear space (which may depend on U},

Problem: Since for a 1
< lm an exact eigenfunction of%ﬁ , it follows that if

nen

-

(1 s

i &= O

ég'/~€; C)foLwNﬁx:)

_-where

€ = (LB Sy

What is the connection between this result and that found

\\\above?

2
7
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XV. The Variational Method as a Means for Approximating Perturbation
g T

Theory
As we have shown in Sec. IV, if, in the variational method, &%

e

can be completely arbitrary, then % and & satisfy the Schroedinger
” corplellny

squation. Similarly weiwill now show that 1f éw“’; can be¥arbitrary,

s ) v Covvy . , ) v )

“fhen the M- and & satisfy the basic equations of perturbation

theory. The proof requires little more then writing ocut the succes=

S ¢ . Thes

sive: equ C for
fresG o, e we have

= O
H ) .
3o~ Dsay e Py D 3 . . . |
E o Y STA 2~ AR TN P I o A By
1Y, o €9 o G g o g oy

sy ey
TR e J

L
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Sw)

\é A
theory, telling us that C¥o and E&uD should be an eigenfunction,

and eigenvalue respectively of %*9) :

P o)
Turning now to (2) and using (&), SN completely arbitrary
yields the familiar first order equation
C LQ;) . A"-@ 3 \f\ =) W) t AN ‘\"\Q‘ 7
B~ 8T ) N (W e = (XU-5)

wE e 5

fk%_,‘;‘.
N

—.and _then (3) with (4), (5}; and SY compietely arbitrary, vields

" the ‘second ‘order equation- -
A o i 2s ~ &y, oy Ny
’ y Crvgns (LYY L ey by el AR T At —
gl &) 7 & VT ) e {(XV-6)

el

etc., etc.

© . Further ;- “n accord with the discussion in Sec. XIYI, we get the
b 3 > &)

: e 072 A
trary. Thus with &% = (1) yvields no information, but (2) with
O (54} G AT 3 -
6N¢?Eﬂ and SN completely arbitrary yields (4). Then using (4),
e P T
2-(3) with¢§ﬁw:@ and &N complete arbitrary, yields (5) etc.
oy iy
Similarly we set the same results if we put S and &4 equal to
Oy :
zero and let &Y ~be completely arbitrary, etec.
Having now seen in detail how..the variational method contains:
perturbation theory, the following possibility immediately presents
. - I
itself: Just as one uses U to derive approximations to the
solutions of the Schroedinger equation, 80 one might try to use the
o), g0 T SELE R .
0 &4 e to find approximations to the solutions of the perturba- .
tion equations. The next several sections will be devoted to in-

vestigating this program.

&) . .
Thus we assume that and & are exact, i.e., that {(4) is
. (}\ (T3]
satisfied. Also we will assume for convenience that ¥ is
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normalized
. ) w_'\
Yo,y T (%V-7)

) bq Qdﬁ?t‘

o
This being the case we will then denote‘%ﬁn and & and

g ‘ e NSO
Eé} respectively. Further we will implicitly agsume that & is
essentially unique, i.e. that & is non-degenerate. A discussion

of degenerate perturbation theory can be found in J. Chem. Phys. 44,

& ey . . ;} W

3266 (1966%. Then from < =% it follows, that, as we expect,
E 3 k] b

E {(XV-8)

Ay
We now turn to the determination of W s, which we will assume

A Y
R

. , AN L L

we can't determine exactﬁy¢ Since we have been "“handed” %7 it -is
By

natural to base our discussion on (XIIL-20). Then since ¥ is

exact and hence all variations are allowed, there are no restrictions

ot
imposed on the % ) , and: from (¥I11-21) we have as the equation to

G-)
. determine <%

¢ !\‘\R‘\ 3 A9 B FAPTE ) ., ig) > .
(&N, G ) 7 & G- 4 Jatleimg

o=
‘Z:J:
&
3
S

oy AR
. The equation J =@ then determines & :

[ X% My . vy | .
VE )_:} {k% (‘“%@/ ‘xﬁﬁ"y. g{ j‘ &(%*) (\'\ (\") ;\ﬂ) g%\@}:} (Xv‘l())

G
m%‘ k{:‘\‘?ﬂ? {‘-‘\%\ﬁ’g r%‘i} Ty >
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XVI. The Hyllieraas Variational Method
From their structures and from the remark that there are no
A’(\ *
a priori restrictions on E) , it is clear that (XV-9) and (XV-10)
can be viewed as describing a process quite analogous to that of the

variational method. Namely define a trial second order energy

by
3] N o S 1
~un) { rein) (\\_L\’aﬁ ¢\9'>) \%/“) "y’ (‘\“ ) e” %{8‘3”, 7
. = (RVLI-1Y
' w) 1) ~\1) Ty
4 ) T ETHNTD
RO o | —
where k%’ is a trial first order wave function drawn from some set,
- B P
Then (XV-9) says that Q?Fﬁ is that i§‘3 which makes %ﬁﬂy stationary

& \-\.‘)
for variations of‘%f within the set, while (RXV-10) says that the
o X sw)
stationary value of & is & .- This observation also serves as

a.statement of the Hylleraas variation method, and we will call

the functional on the r.h.s. of (1) the Hylleraas functional

. ) oy
and denote it by j;? . Thus (XV+-9) and (XV-10) can be written
AN o A
¥ ) w =0

The (probably imoatient) reader will no doubt have noticed that
we could have wrltten <{+ down directly as yielding the variational
equivalent of eq. (RV-5), and thereby could have avoided a2ll the dis-

cussion of the preceding section. With this sentiment we agree. Qur

only plea is that we have thereby placed (2) in a more general setting,
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~ .

/k -

5'3? can also be related to the variational functional %%%&
for a Green's function given in (XII-4). Thus consider the
equation

(09-z) P =0 (XVI-3)

where 'the real number # , and the function /£ are given.
The appropriate variational functional is then

% 3‘ Y e oy

4 A o 4 13 1 et .

Loy W= ) el bl & (XVI-4}

Now the solution of (3} ig (we essume that 7= is not equal
A q

to an eigenvalue of B )

where
ip the

Se¢.

where (» ic a Hermitian integral operator {(a trial Green's
function). Then (4} becomes

S N e X A
(L, b DRz R) 2 U, ) (XVI-6)

%xﬁawhich is just the average of the functiomal (XI1-&4} //y

-
i

We will pnow show that for the ground state

(%0T-7)

%,
A ; ) . ..
where %? 7 te the exact second order energy. We will discuss the

situation for excited states in Sec. XIX. Till then we will be

concerned exclusively with the ground state and hence will not keep

mentioning tgﬁ% fact explicitly. Thus &  ig not oaly a variational
o) o |
approximation to © , 1t g an upper bound and hence the Hylleraas

variational
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‘The proof is simple. We write

(\/“\‘) % ('\,l‘
P = TNy A ) (XV1-8)

\ 2 ; ’ :
where l&?) is the exact first order function satisfying

| (’ 3ol ev) $Wa g™ &;C)@)_A o (RVI-9)

Then using (8) and ( 9) one readily finds

At Y A BT R T S
L;;_‘”‘ . ge™a A . Cve 0 ) (XVI-10)

where is the exact”second order energy:

g o NDYE Faa WY e ’)u. S
M (Y (v ey ) D

For X5 7 the lowest eigenvalue of Y%"we then clearly have (7).
The fact that we have a minimal principle may not seem surprising.

After all the general variational method yielés a minimum under the

similar circumstances. However, it is in fact not trivial and is

; . \an 0y
linked to our assumption that'\*' is exact, Namely we know that

i —
for the grouhd'state‘Eiﬁh Y and therefore for all Vv

/\—\ : o~ - y {Eitg "? B o «1 . ' R t"-'\\ YT
E‘ﬂ*h 3 ik NSy = Y. E7S vEM S v e (WVI-12)

Now in the absence of further information, about all that we can

o)
conclude about the.individual £ is what we know anyway, namely that

P

'E'@? \?\1?)

; . 7 ) g2
which follows from (12) when V=9, On the other hand with %
BADy D) £y " .
exact so that & = © and & SR s, we find, dividing by W



102

W) ,
=y e 3
(XV1-13)
as before.
) (S |
Following the argument further, if ‘¥ is also exact then we
S TP Lo 0
expect (and can show from § = J E = ) that © 7 and © ! will
also be exact, whence we infer from (13} that
f\. % = 13 ) FIRY T L B4t
=Wy e W (XU ~18)
The result {14} of course also follows £ the variastional method

A

and N = \%%\9

under the same conditions

g B RAITS o aa .
we put 5\%“’ 54" =y . Then g’)l&\ 2y yields the first new
s . - s o t{\;v\‘v‘g -~
information, vamely an equation for ~ of the form (Problem:
Fill in the details)
Ay | ,
STy -0 (XVL-15)

where j“\) is, not surprisingly, just the variational functional

that one would associate with the second order equation

- Y kS P%\ " “}
{,\{:\'\\@\zﬂ gﬁﬁij} et xﬂ g ‘i\_)w‘j} \‘%@ .}__4 %"“Q‘ 3. ﬁ\ﬂ? .

That is
gs W P T RN o b Y (\.1 5 - \ W
wm OFT Gavigwy 4 LY O L ey

N - - o B % < o § v} ‘Qaﬁ (X\[I“ 16)
+ ) e et PR J

B i\sf‘”}

EA R
el PP
Further it fOllOWS from ¥
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: . ; 3wy
From this we can then directly infer (14). Namely we know that J v
W
is stationary when ‘%ru%;‘*xta and from (17) it follows that when

™M,
{val_q}t) its numerical value is Y? ) . Now 1f we write

~ . O\
(\.\5;\”)—;_ \k\"") - é"‘-’)

i - ‘ i)
then the only possible source of 'second order terms' in ?}% is
op
first.term on the r.h.sf’(l6), whence we infer that
AL ' ‘\«v) i,\%""\’ ©) @ i :

which. proves the point.

‘The Hylieraas variatidnai'method; eqsu.fl)} (15), and their
generalizations to higher even orders, has been widely used to yield
approximations to perturbation tbeofy,> fcr.example in the calcula-
tion of static polarizibilities and sdéceptibilities, in the calcula-
tion of the effect of Coulomb repulsion (‘ﬂ?: approximation), in the
~calculation of long range forces eté., etc., and many of these
applications will be discussed in detail in later chapters. (Note

\v)

that since EE is less than zero, an upper bound for Eﬁ£} yields
a lower bound for polarizibilities etc.)
_ A & v
We would emphasize however that (7) holds only if & ?KQV) )
' | (L5 v
while (18) holds only if QSU?JNﬁv and 4%‘3;A§30 etc. Now even
’ Al
\m N : ‘\
-grgntingithat.£¥@ he , unsually one then derives @’) from (1)
it B ' )
and then-goes on to use it im (15) etc., (also & is wsually calcu-
, 1
lated from the formulae one gets fromwfksﬁws assuming thatltvo is
exact) and one may well wonder about the legitimacy of such a procedure,
In. general of course one can only hope that one has achieved a
, o | - ,
- gufficiently accurate approximation to W °~ , etc., so that all is

2

well numerically.
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One should also note that the formulae of the Hylleraas varia-
tional method with the symbols suitably reinterpreted alsc apply to
perturbation theory within the variational method as discussed in
Sec. XIII if the space of trial function ig linear. One can see

O (@
this in several ways. TFirst of all in a linear space b =g for

: B WVI?,'E"%»\“
tn2) . Thus (X}i-19) has the form (XV%Qf and similsrly V. higher
fo e =
orders. Another approach is to note that k{“*% w%@re % is an

eigenfunction of&% R fhus“% ““E¥

Further if ﬁﬁﬁ ig independent of v

and all higher order perturbation vanish. Thus we may then apply

A . BA=M h]
all the ab@ve formulae except that we should put bars Gi%ﬁ&VE ¥y
G e eNED L e i , e Lk

and the %= and < . However we may then drop the bars on &y J

and W since the functionms all lie in the space.

Now as a practical matter, one can, as we have discussed before,
usually completely carry through a calculation in a linear space
i.e. find the & , only if the space is finitely parametrized. If

, . e o Con YD
the space is really infinite (the S=limit in He with v¥3 the
electron-electron interaction is an example) then one must resort
to approximationa If one uses a~finite1y parametrizad linear
subspace) then the Hylleraas formulae of course again Q&gﬁé% with
further relnterpretatﬁon of the symbolsa 1f one uses non-linear
patameters too, then in any case, = the analysis of Sec. XIIT applies,
JLf however one does use the formulae of the Hylleraas method, then

R - A ‘
one mist hope that ¥ ) is a gufficiently accurare approxwimation to

T AN o
% ? etc,

In the preceding disc
4y ; g ,
and worried duout‘¥ etc., However if ¥j igs the

ﬁ
@
o
%
~
o
pead
o
B
lwln
] —t
r
<
p!
E—
o
b
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¢ .of an isolated system (with more than 1 electron) then one rarely

. .dc\v) . o
kriows - ¢ with any precision. Neverthe less, many workers hawve
. 1) . Tl
used (1) and (2) with &% replaced by an approximate ¥ and have

E\’\')

LA : :
taken ¥ as an approximation to We will discuss some

properties of this approximation in Sec. XXTI.

ﬁVfi.-‘The Hylleraas Vétiatidnal Method for the Second Order Energy~

++ Miscellaneous Results

o ) vy
“+“(A) - If there are no reality restrictions on &Y% then we cap

replace (XV-8) by

2 Q'\ (W g0y §V% Ly e W= p (-1

m .

with its obvious interpretation in terms of moments.

® 1f e
A—\J\ f b*)’ \?\")
0\ Qahwwﬁ&ﬁ

is an allowed variation with é;W rea] then (9), together with (10)

(XVII-2)

yvields - -
%:M t ("S‘@ Cr2nemydT) s e § (XVII-3)
If in addition B
7_“;\{3»3: 7‘. %;\1' : (VTT-4)
is allowea‘théﬁ'one finds

=

UE&m);_ gggég'(§¥“i;>gf“3 %ATB (XVI1-5)

which is quite analogous to (XVI<10). (Problem: Derive (3) and (5),) .
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N
(C) For some purposes it is useful to replace the functional (Yg?
{

e
by another, equivalent, functional which is derived from 3‘%9 as

v
follows: Suppose that the overall scale of the & ) is arbitrary.

That is, suppose that

SFM\:‘ Eﬁ 4}\\ (XVTE-6)

o INSTTON o
. ~where C  is a variational parameter and ¢» ~ is independent of T

O - e ‘

If there are no a priori reality restrictions on & , then the opiimal
€ _for a given %ﬁ {we will not intvoduce a special symbol for this
©

) is evidently determined by

ooyt Cowy o) ey B (YL g5 OFY)
f@g;,} R { ﬁ;«a_:&iw LW e ¢ e Iy gD L0

whence we have

- -y <D
%; . CE;Wé (jggﬁﬁﬂ_EE\?) c%g })
@RI AP *)

Ju——

: S )
- If now we use this value for ¢ 1in the Hylleraas Functional,

we get a new functional which we will call the Dirichlet Fungtional

and denote by SCD . Thus

‘ ; W
- ) oy Y
o . Ty ooy £y
2 S L omem o) S
(* gﬁ({z (_W&»wia Ew% ) &Jﬁ}j
Ly - T R
&%"‘g then yields equations to determine (gi\; ) Lé; ie then
determined by use of (7) and § and in particular ;%h@ ield
. \ Yo Y
) Ty

upper bounds to c . . The 3:ﬁ  furnished by the particular choice

e (SN

b

(é\%_m ‘}M\ 6"‘\3“’} &(";\@'}

SEIY L L i g R
yields the so-called Hasse bound to = .
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o
///'One sometlmes rgags that 3‘g? is a better approximation
to ©‘““than is j’ . In view of our discussion this
sounds puzzling. What ig meant is the following: Suppose
that in %"a’)we insert not (6) with (7), but simply

C; bhz :E\ﬂ

Then the conclusion will clearly follow since we have nog
adjusted the overall scale of &Y in an r‘Ptlmal way. Thus
for the same trial function, i.e., t;*q'~ ép*ﬁ s, we have
for the ground state
vy T W)
T W Sy v € (RVIE-8)

; - 3 5 ¢ () s i
Inyparticular note that like E 5 S‘D is deflnitely 2P .

L

He S TS SR - Tk P
KE ey A T wed wm

25, Bcires

a3
S
2 05

' ey ey
. Problem: ‘Prove (8) dlrebtly by showing that ﬁ“v e
%k\ﬁlb D ror«the ground- state. . v "

(D) 1If ope tries-to prove directly that

oty —\D v s
R b3 (RVII-9)
V\') W) '
by writing d?;.v$% T“ZB etc,, one flnds that one must invoke the
Schwartz 1nequallty (Pfoblem Fill ;n the details). We will now
show that in general (9) can be considered as a special case of the
Schwartz inequality.
To avoid spurious singularities, let us replace by - where
2;.15 sllghtly less Lhan EJQ’ .so that Q@ﬁleﬁ is a strictly positive

Vo
operator. At the Pnd of the calculatlon we can then let T € i

—— Y
j;Wyph-ph;s,understandlng,~¢: can be written

g, Q9 Gl ") (WU g) oo W)

—

which we will write dg

A C '3 \’) "'f)
E\ . T L’){,b) LU %1%9
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where

ic\‘D) — (,“ﬁmia ' E-?:‘"”) ,‘%\’0}
and
w
. Now from -our hypotheses 3:2, " exist and are Hermitian, whenee%ﬂ
. - - [ N
follows f{rom the Schwartz inéquality, that for any #@“H

/ ?dm _Ef ‘-\{j\m'\% @ﬂ}m Q}%ﬁy) = (g™ \fﬂs W“”Qa,*’(é"z (g

AR ci ) 1wy i
W %{} % %i,@ \‘é’f) /@ é} )AR

L e e e
whence, since the v.h.s. eguals a @ﬁ?§% é;p?}i we have, after a bit
of rearranging that
fe
5 hs
— Lo, ™l
«:E‘“ M‘“

which of course is just .

! Problem: Generalize the results (4) - (D) to higher ordars,

(E) In many situatiamsﬂﬁff%’ “describes the interaction of the

system with.two fields = = - .

Yy Wy e
v = Jyw, b Vﬁ,%vtwﬁ

q;
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- ; N e
and one is interested in the cross term in V ®

, i.e., the term
proportional to ‘V\\/V (shielding coefficints, electro-magnetic

effects, etc.)

- W A )
VYEYLE W ET Vv e+ EY

Now from our discussion szo far we have a variational upper bound to

AU%)
E"\’) , and hence a variational upper bound to € - {put U.P =gy )

- . ,
and a variational upper bound to E:’j {(put ﬁ/f.—g) y). However, this

S
yields no hold on Evw . Thus for evample, suppoze that wg would
have ) " ~
Ly g SO Evy vt
VVE U= R TmETY Vi S A T B

L
Then from & #E'™” we can't conclude anything about the relative

5 ! = wh —\ . . - 5
sizes of & ,, and & 7 . 1In this situation several alternatives

are open and have been used.

Le‘?é:h,)

(i) Determine a v and take the term in it proportional
1

B TS
to VW, as the "best'" approximation to the [E,., . Note however

Sy
that if we define \5 by Vy=v "5 and VeVl then if % 4 involves
" A
non-1linear parameters, then usually € will not simply be a

quadratic form in 3
- C‘:\:ﬁ') . Akﬁ‘h
(ii) Put VD and determine an ©, . Then use the l) to

1 m . : . @V) .
compute a 'best" approximation to vy according to

o9 P eW) &) r e (XVII-11)

¥

where

A ) R L LV ) L L
S0 oS W) e nr (T avewen
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Rev. 172, 1788 (1968) Sec.” II for some comments on this point.)
Lo

However, we need not use T
(\f\;)

insert for &kb

in this way. One could, for example,

(\\.\ [§ 92
the \ﬂ) from (ii) and for ‘“\’3«) the QJQ from (iii)

=

with the hope that (14) would then provide a better approximation to

) 3 "
€ \ then either (1) o (12).

/;roblem: Show that if in the procedures (i) = (iv)
one draws all the trial functions from a common linear
\space, then all four methods yield the SAwe answer. /

A\~ <
(v) Find g variational lower bound for E > (and hence for Gl’)

and E\\f )o That is, given the second order energy, call it EQ\’) , for
L o
\/H\ﬁn) = (.\%\{)”*“\%\ )

and the second order energy, call it Eﬁi , for

then evidently

)

—_—

A
3 \_\)/ = E\T;) - e

)

Thus an upper (lower) bound for = + combined with a lower (upper)
bound for E\i yields an upper (lower) bound forE&?V . We will

discuss such lower bounds in chapter _____ __»
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XVITI. The Linear Hvlleraas Variational Method
S
In practice one often takes for Q’%’ the linesr variational form

[
o [ .
S(\ . 2. &k@ﬂ = (XVITI-1)

‘@—rﬂ)\

=
S
where the #@f aré’ given basis set and the Q\@w) are variational

parameters. The d%%@ can of course also contain parameters, however
we will consider them fixed for the purposes of the present dis-
cussions.

Now clearly we can replace the *‘%ﬁ, by a set of M functions

C\ﬁg, with the properties

C&@L} Y= Swq

(XVITT=2)

Q\ha, B‘w}qﬁg') = &w &“5—% (XVITI-3)

~ A
namely the T and S are just the “He and €% which emer ge
from the linear variational method of Sec. VI with («%F"“"‘\“}W) and the

%&@ agaln the basis set, Thus without loss of generality we may

replace (1) by

4
NP NS
GV 2 \@‘Q “te (XYITT~4)
(e
=15y
Since we will impose no reality restrictions on the \@\g_, we can

t"\%
now use (XVII-2) to fiand, varying %}g s and using (2) and (3},

C,é\g: F‘“‘\@'i\ \ﬁ‘) 4 U‘}i Q\%‘rﬂ) ~A1% \Q’QV} =10
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or

A G, Gem 9y W)

Y = (XVIII-5)
C c\\("_‘ E'\‘Q'\)
whence
W _ B Ny Oh 637y )
‘*(: o= v R (XVIII-6)
@AE‘\V)
and from (XVII-5) we have
p \ D) \L’
o Yy il G'AN
eV 2 L G EMHY W) —
S A
sl ET¥’—*E;“»

These formulae of course have a close resemblance to the "sum over
states” formulae for ‘QW\ and EQQ.

In the above discussion we have implicitly assumed that none
of the &g is equal to Gfﬂ . If we would include \QO) in the

basis set, say choose
- \V
& -

then one of the %l 5 ¢all it Yy , would also be“-e\»“ and S
9
would equal €? . Under these circumstances (5) holds only for
) . —— ,
=) wh11e&;° can be chosen quite arbitrarily. In particular
Wwi°
then we can take it equal to zero. Then since from (2), QmeQ?;)

will equal zero for &) we find

M
(\\&)":’ 2 (‘F\d”w)\%‘“)“@m) (XVIII-8)
_ - —
\C’M‘\/ 6\&.——=E\D)
Ly oy VY
2 - R T W W) (XVIII-9)

&= v &\L__‘ g’\ﬂ’)
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which have an even stronger resemblance to the "sum over states"
W) =YD
formulae for W and &

1 Method for Excited States

reumstances in

=

In this section we wish to describe severasl ¢

(\\ﬁv) 5
caa i) \o) .
which & ~ will be an upper bound to © when W iz an execited

@
-t
o
o
o
.

=
[
Pede
®
3
2
)
o
e
]
s
S

1 clesely parallel that which we gave

&
vnder which B would bhe an upper bound to

£ for excited states.
First of all suppose that there iz some symmetry property which
. e U ' i
is maintained in the presence of the perturbation. Then 1f €
the lowest zero order eigenvalue associated with that symm&tryﬁand if
f\s*\{) ) )
the ¥ all have that symmetry then 1t immediately follows from

(XVI-10) that

e €7

o : .
. . . . ) , . . " .
since if we imagine expanded in terms of the elgenfunctions of

Efﬂ» , it can involve only states with energy greater than or equal

In Sec. II, we also peointed out that more generally we would
/\/ 6
have %:ﬁﬁg if %’ were orthogonal to all the lower states. However

we dismissed this as being of no practical interest in the absence

‘f}

of symmetry, since éﬂe would not know the lower states exactly,

However in the present context the analogous result becomes more
interesting. The point is that one may well know the exsct zero
order wave functions for the lower states, and that koowing this it

is then easy to enforce orthogonality to the exact lower states
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through first order. We will now show that if one has orthogonality
through first order then %‘Ywﬁ/ gi\r@) .

Suppose then there are T zero order states with eigenfunctions
k—kt\w and eigenvalues E%@) guch that EW) E\w (more precisely
if there is symmetry imvolved) then T is the number of states with
Et\ﬂé E'W) and having the symmetry of ‘gﬂ , however we will not

A
continue to stress this point). We now require that 4> be orthogonal

to Q% through first order. Then, since they are orthogonal in zero

order, Hai, PAe /RS sl
Cu{ \07 \{/m} 1 é« \ﬁ&\mi)zb =l ~--1 (XIX-1)

But from the'sum over states' formulae

(o)
3w = () WY )
/,___——s——’-—"‘
~ \7)
ew_ gy

whence from (1) we have

(4N W)
Q Q%\m, W) N C\s( p \ar\*?LL\v?)
E}¥”6=§E“ﬂ

() Y%
which in turn equals C\&t,\k’\) . Thus if (1) is satisfied then &M
\0)
will be orthogonal to all ’P!N»ﬂ Q‘t ; @and hence we will have, as
N
) o
announced, e = ? y

Now ome way to ensure that (1) is satisfied is simply to use

trial functioms of the form

N
k@'m: _ Z &{(tw) (B \w v q(\m) .
o= W

7
where X is orthogonal to the‘%t (This is the approach suggested

by Sinanoglu, Phys. Rev. 122, 491 (1961)39 A rather more flexible
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method (essentially that of Miller, J. Chem. Phys. 44, 2198 (1966))

is to uge trial functions of the form

—
§ Y
AN . O (7))
O T Ve 4
=9
o N
where the g are arbitrary variational parameters and where§/ can

v
be anything except that it should not invelve the C%i, explicitly.

N4
To see that this works, note that if we ask for the optimal Q for
3 p 4.
2
a given V¥ then we will have

! & v Aoy )
6&% L(ﬂ%ﬂC%wLEyU&Qz)%(wkiquEwM@UliD

or

:» [ \"\

Q{{: : ;b . wat\iﬂ (0 %ﬁ,@}>
““E?Tgfzcg§ﬂ)
and hence, in particular, (1) will be satisfied, which proves the

point. WNote, however, that in general

d - G e
E\t\@e €W)

A
. . \D)
unless ﬁ/ is orthogonal to the &~ .

Finally let us turn to the analog of the variational method for
excited states discussed in Sec., VI. Let usg suppose that we have used
the linear variational method of Sec. XVILI and have chosen I
sufficiently large, snd the ‘%@a sufficiently well, so that | of

) - )
the éwg are <§ . We will now show that under these circumstances
EVW g™ . To do this we will imitate the procedure of Sec., VI
and add one wmore function to our basis get. Thus we consider trial

functions of the form
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M AL
N\"ﬂ v &\) D
= 2 C, Ve »C7 &

Sow (XIX-2)

where without 1ess of generality we may assume that C‘F is normalized

and orthogonal to all the ¥, . It is now a simple matter to derive

Ay
(Problem’ Carry through the details) the result that the new E 5

& )
call it E (M’”)) is given by

AL TN
EM”) (MeN= e Ay — Z

(XIX-3)
Ve
(\\Q_
where E}M) is given by (XVIII-7), where
5% P
9 | 3 &5 e ne) (n 6% €)e)
e

\gj) WY e i -4
= T o) | (RIA)

- &y

is non-negative, and where

\g) hosd
ch\oﬂ) = % QM?} W) | . LE‘ﬂa @,} H\'ﬂc‘b)l (XIX-5)

E\@W = é—"&-

= FE™M~ &ED (X1%-6)

We will now show that “DQE;WD %D  whence we will have

o I Al
E "ty 7 E >cw,~m)

a.
(§R)
and hence, assuming convergence, & (¥) % gl as announced. To

show that %CE;WD

is positive we note that from (VI-10) the roots of
!
D Cé} )=0D  vould just be the €. that one would derive by using

a trial function of ‘the form (2) in the linear variational method as

4 \(]
applied to B =y Thue in particular it follows from the separation
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theorem (VI-11l) that

1 =
Further we certainly have
© )
E Ve €

and from our initial assumption we have

e, ¢« €7

That Y)CE?’? is positive now follows simply by looking at a graph.
\
Namely €74 is given by the appropriate intersection of FWCE}

and the straight line Gle)

¥ &

whence we see from the graph that

F}CETUT> 2 C}-Lez\éi)

which proves the point. Thus we have here an alternative method for

. \v)
getting upper bounds which doeg not involve use of the \¥t . Of
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course, in accord with the discussion at the end of Sec. VI, one will

get a better result if one does require (1), Problem: Prove this.

/

In this discussion we have implicitly assumed that none
of the &, was equal to €9, If, changing the notation
slightly from Sec. XVIII ;% qpn = o) (for an excited state
this is not the only way of having an S%e_ﬁfuﬁ however
it is the most common one) then one finds results like (3)
- (6) except that the term ¥=T%1 is excluded from the
sums. (Problem: Carry through the details.) Comparing
with (VI~10) we see that this corresponds to having, in the
notation of that section, one of the (8" §\%) equal to
zero. However, the qualitative result is the same, the
appropriate graph being

| i

\\\\ (Problem: Carry through the details.)
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by Optimsl First Order Hylleraas

Our discussion here will be patternsd after that in Sec. X, We

A& Ay .
fons such that @f’ PERVA ) will

are interested in (zufficieat)
satisfy variouns theorems through firszt (or second) order. The genera-

lization of these results to higher orders we leave as an exercize
for the reader.

(AY Generalized Hellmsnon~Fevnman Theorem

If boﬂz%%wﬂ and VA contain the parame exr T, then clearly

, \D) .
knowing only&% ant  € accurately only

G

Cba

through first order.

&
o) ») - e e
that 7 kv will satisfy the Ceneralizes

Sl
jad

ellmann-Feynman
. . ) P e WY .
theorem through first order., Oun the other hand 1f only v contains
¢~ then we might hope to satisfy the theorem through second order.
Let us first congider the simplest case -- that in which %ﬁ*@)
is independent of ©° . Then the generalized Hellmann-Feynman theorem
reads

& ./
o (6 2 o) g

bO’ Y- {(XX~1)

which when expanded out through second crder vyields

2 L 3 (vE") *
IO
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or)equating terms of the same order in v we have

bE’\@
. (Xx-2)
va =P
:b; - E\ﬁ) —‘j = \@ H\?)‘j&b}w')
‘fw’w (Uc T}
A &) 2 W E” WA 5 a
D B o v 8, (RN D) e

Since EMﬂ doesn't depend on ¢~ eq. (2) is trivial and so is Eq. (3)

since

vy V= (W )

) 2 _
and QQ is independent of O . (More accurate]yfkﬂw) could involve
Q@ only in a numerical phase factor.) Thus we are left with the

question, when will (4) be satisfied? Well, we hawe

A~
2 E‘Lw) - \\\-\’) C\t}\@ E“ﬂ) (\\\\) "\“\/ {Q\f C\t}\") e\«w)\é‘m) APL-(}
Now let us suppose that e%w’ Sa is an allowed variation of &jﬂ
g
Then in calculating %(Aﬁ’é %) we may ignore the terms involving ebr‘}’)
G
DG”

whence we hsave

B EMY L VTS, e g&l“”} T 3y eft (@) ¥ 62
-;T(v B7)= = O Y > Lalwmene ) }

LE bw%@@“flﬁ then this is the same as (4). If %5;}${) then to

agree with (4) we also must require that

A Ny » 53
BN = l{, I[\p} GaW- €M) ™) Mﬂul (XX-5)
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the conditicns for which we discussed in Sec. XVII-(B). Thus if we

&\N) ) )
select from a set of trial functions which are independent of

o

so that &§é>%@a ig an allowed variation, and which have an arbitrary
over all scale so that (5) is satisfied, then (4) will be satisfied

s P A e Lo §
automatically. (Again, if p =0 then we don't Megd (5).)

Conrane oo Hae

Problem: Discuss théwceneralized Hellmann-Feynman theorem
for the case g =)

. ) . %%“ﬁ W
Now let us consider the more general case in which both and ¥
g

may involve . The Generalized Hellmann-Feynman theorem now reads
A & w) e
= W e 2 m«m)&?‘)/
Bﬁg}”’}‘ Cwﬁt”fb? oo ) (Xx-6)

Expanding (6) in power of ¥ and equating terms of like order we then

find in particular

fag) ) w)
bE _ C\;{) \0) b‘}j ‘JC\W)
D6 bl (XX-7)
and
y (N
2 (&) = v O L2 (w07 wew
o T (XX-8)

WD (v (7
*’ G% ) g}.v ‘):§§+ /)

Now (7) is certainly satisfied since QQQ) is an elgenfunction of ﬁ“ﬂ .
Thus our goal is to find sufficient conditions so that (8) is satisfied.
Before proceeding further it will be useful to rewrite (8) so as

\G) =D
to eliminate the g;Ck*v“Eg ) . Now from
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‘ )
(Qwo_ £ ) N =5

it follows that

D \p)_ O \zﬂz — (gL g‘”")?“@v)
[. Dl Sy = 7«} * 5 DG

whence we can replace (8) by

M
—wy B\Qw B g\ o
WE™) = -y (V7w ) &) o)
A Al
\ ")_ C’\/%Nﬂ) Y
+ (< Lw Ve
\0) )
Now let us assume that 3“ &a— is an allowed variation of %t
s
Then from the Hylleraas variational principle we find
i CB&\,V) 3P &) “‘0) (b\@@ v-s»&“”)& Xl-te. =4y
where we have used %iﬂﬁsz‘gwolﬁv . If we insert this into (9)
we hawve
(:""\C
b ) S -
2 e = {( b“‘ B ) +C\Q"’ ? uw*)&@")
Do
or
) = A9 W) = 4 WE
é?—[x/E ) i}’(\k ) AAL ) DO‘W

i.e., an identity and hence eq. (8) is satisfied. Now how might one

g W7

ensure that 53‘ Lo is an allowed varigtion? The one

general way we know of is simply to use trial functions of the form

(g ~
v X WYL x
KX
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(24 ™
where O« is 3 variational parameter and ¥ is anything which does
~7

not depend explicitly on 0. .

(B) Virial and Hypervirial Theorems

For simplicity let us assume that’)B is independent of 14

Then expaunding the hypervirial theorem
. A . ¢
(§, Ta,0l8)=0

the zero order equation is of course trivially satisfied whence we

are led to consider the first order equation

(WP, [y,67] )+ 007 Th DR @I 0

One now readily finds that if

ﬁ\") f\ \rp)
Ay U= 87 A (Xx-11)

f
with "l a real parameter, is an allowed variation, then (7) will

be satisifed. (Problem: Prove this.) A general way of ensuring
that (8) is allowed is to introduce it via a linear variational
parameter, i.e., to use
N %ﬁ'\ [
- \p)
= LREHYY
Note that this is just the first order version of (XI-14). Problem:

InY
What theorem is satisfied if no reality conditions are imposed on & 7

Pagdwn, 1 Dstver Hhu sadvadwod Ha H05 v ")

(C) Orthogonality

, . . ) wl ey
Here cur question is when are the approximate functions ¥ +v ¥

i \w)
and ?@»+V®L) orthogonal through first order, given that B2 and
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1)
ﬁX are two eigenfunctions of ¥%WDbelonging to different eigen-

values, and hence orthogonal. Thus the question is

v

(¥, QW) ¥ (’Jim) P} =0 (XX-12)

A )
Let us now assume that (XVIIL=1) and its analog for Jg.) apply. That

is, we have

B, aye- €9) $24 vl e e~ p o
(\ L] 22}
v°, - &) WDy Oyl DK )= (XX-14)

Now let us suppose that

AYV = s AW
and

(XX-15)

e Ay
are allowed variations of W  and ¥ respectively. Then it follows

from (13) and the complex conjugate of (14) that

(7, O 8D E) H0E 8, cum ey W)
and (XX-16)

9l ) W i \0? =
C('}\C(\')) Q\*CD)F e\?)) \_‘: ) A ("\L\V) C\f‘} }_ﬁe,’)\{” ) D

»
Subtracting and using (OW7'- g% WPy , (- e™) )L"'”:D , and (’)L(D, Y?)=p

we then find (9). Note also that from (16) it follows that
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S sy 7 'S A
(% 47 = (%) 92 (Y, o)
"’E“‘g‘)_ﬂ&,\‘v‘)

and gimilarly
M VDY A
(~ "‘; WY L { Z@@)‘% }

A
i.e., referring to the discussion in Sec. XIX, we see that ¥  is

: A
orthogonal to the exact ;?L through first ordef}and likewise X is
oo ] 4 L) e 2
or thogonal to K}) through first order. Thus, if %;%g is the ground
- \O) . . . - i
state and & the first excited state it will also follow that

o )
e}ioﬁW‘EJWD . Further, as was the case in Sec. XIX, the general

way to ensure that the variations (13) asre allowed is introduce

(aw 3 %
Wévj z, AQ@fX into ‘%‘3 z;ﬁii jl use of a linear parameter,

(E) Gauge Invariance

The conditions on the€;h3 which will ensure the gauge invariance
of the energy through second order can be inferred directly from the
discusgion in Sec. X1-(E). However it may be worthwhile to furnish
gome further detail since in cases of interest g is usually not of

)

L ﬂju\%
the simple form VT 7 which we have been assuming. Thus consider

a system in a magnetic field. Then }% typically has the form

W= 8% v Byt

> . . te 43 > , .
where‘V§%) is linear in the field and V"W 2 quadratic. Thus from
the discussion in Sec, XI=-(E) it follows, siunce after a gguge trans-

L TA LA
- [ =
formation U= ¢ = €

) ;
We B0 oW e Bt
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that ¢ {7 is o 0~ J Yo

{_t\‘)1 (Cp)
v = 99 Ul T ] (xx-17)

‘VVH\’*”.:, \/M\"r\v}?- v “:- VBVH&’} “*"li’ Lq 1:‘“2 “\{”33 B
. (XX-18)

and .that the higher order terms which would result from the expansion

of 6& @ simply vanish.

From (7) it then follows that Em’ﬁ € for any L. since

L\[pm, LG @y W) =g (Which expresses complate gauge {nvariance

‘through first order. Then, in sccord with the fact that Lf =&Y

- and sz' then ‘\\'ﬁ"e'&ﬁ‘P s one. can readily show (Problem: Do this)

that Lf we define

& W' SW, Ly

(Xx~-19)

then
?‘:\Q,&— ) p’ @) o %'\\,:') b O0P) @) (XX~20)
where %'\Sf) is the Hylleraas Functional for w9y ‘r‘rm.ﬁ R ua:tngﬁf'm?

as the trial function., Now let us suppose that the set of tridl
. ; J
functions which we propose to use for both H and M i closed
N=in)
under (19) for certsin E\ s l.a., that if \p is in the set then
inn/

80 is ’{*m + (This is clegrly just the first order version of our
requirement in Sec. XI=(E).) Then from (20), since given the gauges
(».{,\"1, \:)“'" ‘{\") -and Q\k\v", Mg ‘-_(5‘") -are fixed numbers independent of the

¥ /
trial functions, it follows that if 9\4‘0 makes §6§ﬂ0 then‘gl"n

tan ¥
will make 6%;’ 20 , whence, using (20) again, we will have
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A A t

‘But the quantities on each gide are the total second order energles
(paramagnetic plus diamagnetic) in each gauge. Therafore under thegéﬁwéﬁm&&
the energy will be iunvariant through second order, to the transformation

generated by the pastesiaa (7 5 ﬁﬁu@%ﬂ%ﬁﬁg

Broblem: Mora generally discuss {nvarlance to avbltrsry
%\$umitaryxtramaﬁafmati@mso -

XXI, The Delves Varistional Method

The‘techniques of double perturbation theory were lntroduced to
deal with the following situation. We are given & (normalized) function
\P(oW) which‘in‘some»aanse approximates the exact (nermalizeé) elgen«
function \%F” df an igolated system, whose Hamlltonlan is %%Q? s and
we would like to imprdve on the approximation to CQQﬁ Eﬁ°%ﬁﬁﬁ} offered
by C‘kw» W *WDD , or we would like to improve on 8. ”pa‘larizibii&ty"
or what all, where %* ‘is some operator, Then double perturbation
theory (or the interchange theorem) offerk the following preseription 5

for caleculating first order corrections: 'Find & Hamiltonlan

‘such that

C%Wﬂ“ E“m)‘%wwza» (XRT-1)

where Eﬁ”) 1s ‘@ real number (gnd such that g9 18 non-degenerate).
' )

Then determine a function &' ' from,

(e gioot) NN £ %\V;@ﬂ s (XKT-2)
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where

AV D), N \DB) (XXI=3)
E - Q‘% J % K e )
One then shows (interchange theorem) that
SEM = 5 OO - €Q0R) g g, (RXL4)
where
\\/ - %}w‘z& ﬁ%ﬁ)@) (XXI=5)
and
N SARVIN 2 -
‘ (XX1=6)
Aot}
vields a first order (in the parameter ;x )} correction tok ., That

is one shows that

SEWL N (o) o e ) e (XL-7)

where
(1 &0 g0 ) (.l F QU — EPY) Q) . (XXI-8)

which clearly is the first order correction.
) , . , . . \DLY
The advantage of the formulation (4) over (7) is that & may
o -
be easier to deal with than ¥ , l.e., PP) may be a simpler per-
turbation than V. In either case one can use variational techniques
to approximate their solution, and we will comment on this later.
The point we want to make now is that this approach, either in
Hkb o)

the form (4) or (7) hinges on choosing an Now in some situg=~

tions there may be a natural choice, however usually there will not
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be, and since the answers certalinly depend on the cholce of %%Q@)
it is not really clear what to do.
We now note that the variational method suggests another approach
which seems to avold the problem of choosing . This approach has

been most developed by Delves. (See Proc. Phys. Soc., 92, 55 (1967)

for a recent discussion and references to hig earlier papers. Similar
methods have been suggested by Deal, et. gl., J. Chem. Phys. 49, 3395
(1968).)

Consider the Hamiltonian

B 9% vav

Then its eigenvalue EZ is the quantity of interest to us since
BV C@’ﬂ)\%“ﬂ) @m} , wa? ‘yxﬂ, 8 4 the polarizibility etc. Now
suppose that from someplace one produces a function %ﬁ depending on
J )mMich is such that for V=p , %3 becomes Kgﬁﬁ s i.e., Q%ﬁé_q»pw

Now whatever @3 is we know that & defined by
e~ (& G5 vwME) /) )
&= g (%@ (XX1-9)

will differ from & by terms of the order of the square of the error

in %30 In general %ﬁ will be in error, i.e. differ from \¥f the
‘D*@ék’uz;'@ Cu3 ko»l LQ»\MQ;, @‘FM@/\?Q@@ %
exact eigenfunction of %%) by terms of where ¥ is some measure

fod)_ \9)
of ¥ — % . Thus © will differ from!E by terms of order V%D,
— SubppLe
b and ZY . But now'that is such that if ¥ were equal to

zero then %- would be exact. Under these circumstances 4> will be
5
in error only by terms of order g whence E=& 5 and hence the gf“meéff

will be only of order E . A case in point is URHF for an atom.
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Then if there are no degeneracies for 29«0 we can identify & as
sz o Further it is clear that under these circumstances URHF is
exact when &% if %FW is any one electron operator. Thus we have
rederived, in a very direct way, the result we found in Sec. XI=(D) by
use of Brillouin's theorem.

Now in double perturbation theory € is identified with the
parameter ;\ introduced in (5) and one ensures exactness in the }243
limit simply by choosing ﬁ%zgfﬂfbwhere %}b)3 satisfies the exact A=D

equation, namely
] ® w {6, 5
(@ !f\“lfm)\‘%’ R o (XXT-10)

s "('D ') N

Thus in particular writing k%m’)_i SR gnd &7 = J g 'Ew‘fi)

the first order equation is just (2) again. Further, whatever %k
T Y

is,we have from (9), writing @-: Zv“ﬁ’qm and €= 2 Vv & )

that

e C\%\mﬂ, @ o)) (XXT-11)

) \
e g9 4 (W (wlewDPN) e, } (XX1-12)

etc. and one readily finds (Problem: ¥ill in the details) that with
)
%" = ‘gQ”} Ho e = EECQ) as given in (4).

However now suppose that instead of (2) we consider the equation

(el \w7) gagﬂ + (a™_ glov ) \,c,\awcl 5 (XXI-13)
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Presumably we can’t solve it exactly, however let us ignore this little
F% W)
difficulty for the moment., Then the point is that clearly ¥p will
Wy, N .. ) W At .
equal %¥3 i& [ s and hence, 1f we would insert = é?D in
[
(12) we would equally well have an estimate of & which is in error
'
only by terms of order § .
;. - o o o &
Now the virtue of (10) ig of course that it doesn't snvolve an
}

t% , but also, as we have noted, one can't solve it, However,
except in gpecial cases (the‘J%j expangion or the shielding approxina-
tion for example) this will usually also be the cases with (2) so this
is not a special drawback of the proposed method. In either case one
can use variational techniques. For (2) this would simply be the

Q b)) )
Hylleraas approach with B playing the role which & played in
our earlier discussions and all those discussiong will apply. For
. . . . . . A
(13) however the situation is not quite the same. First of all €

9 -
is not equal to e . This has the following consequence:

v @y Aol
%ﬁ&:éﬂﬂ is of order ¢ while Q%Nﬂ)QN%VLEE }%> /) ig of order

. AWt ‘ﬂ‘> ) )
E . This then means that (u% ,d%§> , if it doesn’'t vanish for

L
reasons of symmetry, will be of order /%g . Such a behavior would

seem undesireable. Hence we replace (10) by
w) ) R (B 2) Y3
(a9 e C% + Ly =D (XXT=14)

S ) ~
where ?; is a number to be chosen so that WP yc%j =P  whence
there will be no problems as .zﬁ%ﬁ) . Siunce 6; wlll differ from

DY .

EEO ) only by terms of order 33 s (14) will still be exact in the

Ed?ﬁ limit,

gym) .
A further difficulty is the following. Suppose that is

o )
such a poor approximation to Y that & lies in the countinuum
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%MD ; : ; _
of | (such a situation is not at all unusual. See Dougherty, et.
al. J Chem. Phys. 45, 1803 (1966))., Then the homogenous equation has
a solution and the inhomogenity will uvsually not be orthogonal to it,
so that one has an inconsistent equation. This difficulty can also be
avoided, only rather artificially. 1In practice this difficulty
usually doesn't appear explicitly because one usually couples a poor
(o0) ,
\¥ with an equally poor "solution'" to (12).
As we have said, the natural way te attack (12) is with a varia-

tional approach. Evidently the appropriate functional is

—_—

)
(XX1=15)
i~ N
™) (- §) @)

N &y
where 'E is to be chosen so that CQJOﬁ% O )ﬁ;zp . One could of

course also simply restrict the set of trial functions to functions

Ul
orthogonal to 4} ) and replace (15) by

< b ) Wy (O
N= (B9 oA em ) +CEY BRI e

£ q/\ﬁb)) o) &"‘)

To change the subject somewhat for a moment, it is now of interest
to note that, as we remarked at the end of Sec. XVI, the functional,
N ~ V)
(15), though often with & replaced by ‘S
: A
approximate the second order energy, i.e. D  is used as an approxima-

tion to E§1)!

The following are some properties of this approximation. In

, is frequently used to

the main we state them without proof (see J. Chem. Phys. 42, 3630 (1965)).



134

IR CH) =

(}x"\\f) W)
(1y WwWith qﬁ ilc?§> the value of E) is
. Ly -
ot )
D= ¥ ) B v ) (XX1-17)

. . ) o .
One can then show tmatigﬂiz is of first order in % and can have

)] L —~\]
instead of S then D~E"  can egven

. . W
either sign. (If one uses E
be of zero order in S 5y

e\ ,

(2) As noted above, if ¥ iz so poor that (12) actually is an
inconsistent equation, then usually one is not aware of this, and may
A
. D , o,
even find a reasonable result for , because one will probably use

(\7\\')
a limited and 'reasonable" set of @} .
{(3) Writing

N ~ =
BT ey =D

then clearly

B~ Do (A, Gy )

N2
If now symmetry considerations apply, and if & is less than the

energy of first state appropriate symmetry then evidently

op
{S‘“ DRl
If one does not have symmetry, then one can still show that if %Qﬂ}
is the ground state, then QS will be an upper bound to D if %
is small enough.

Returning now to double perturbation theory, the approximation of
the solution of eg. (2) [qu (8) j variationally, followed by use of
eq. (4) with QyﬂB replaced by~§@m>jseqe (7) with %Qy? replaced byé$ @“j

1y -

to approximate & (for an application see Chen and Dalgarno, Proc.
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) !
Phys. Soc. 855, 399 (1963), For ¥ ~ they vée the Stsnn\weimen

Hamiltonian) is of course just the same sort of procedure which we
discussed in Sec, XVII-(E) part (ii) lpart (iii)} in a different Seww -
2ction. Here, as there, then, there is another alternative which
Cﬁ%
deals with directly. Namely use of the functional (XVII-12},

which in our present notation becomes

~ e ST | o -
%u C\\%}\‘G”‘; C%wmﬁ E\@B} ¥ @ﬂ) + @ “\’D,; (vl glos ) k%‘}gﬂz)

I C\%“‘%”) (Vv — E@w ) Q;f: o) ’>:) } m Lo

and we can simply apply the discussion. which we gave there to the
present situation.
A NN
As we have noted, the use of D to approximate E s €.I. to
approximate polarizibilities, involves a first order error in § .
One can obviously however get an approximation which involves only a
{62)

second order error either through the use of , 1.e., via double

. @\q’) ) )
perturbation theory, or by the use of a p defined by an equation
like

Gy &) P £ Gamo e ) 5 P70

and their associated variational principles; etc. We leave the
details to the interested reader,

Having come so far we must now point out that in fact the Delves
method is just a special case of double perturbation theory, i.e.
involves 1 gF@cial (implicit} choice of E%Qﬁyg Let <§> be the pro-

- %‘,\W) . e )
Jjection operator onto , ie.e, in Dirac notation

<?ﬁ; \K%}@ﬂ);}it%}oa)i
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w) o
and let us take for %% the partitioned” form

Y W R @y Q-0 B39 Q-6 (XXI-18)

Then evidently %}QW is an eigenfunction of v%ﬁ@ and the eigenvalue
2 3 & @‘\91; FThan Te '] ™ T g g - R &l s i P P ~~ PR e 2 e
is just & (Problem: Prove this). Coasider now the asscciated

Hyllersas functional

(§ %) oo ) I0) £ FO0 g £00) i)

: N
+ Q@xﬁ@) C§YO_ gy {ovy

. L Moy gﬁmﬁ T
Now suppose we restrict the &% to be orthogonal toY {:the
: < j , . . . ) ‘
value of Q%ﬁyzﬂémﬂ> ig znyway undetermined and 1rreLevamE}0 Then
i o CX
o . SRt I ;
we may drop the Eﬁg@ terms in (19) and further glnce(E%’ =5 and

e Py ) §
(=M Y - ‘-%/ﬁj we may replace %\@D\) in {(19) by B . But then
)

we see that we have 1) in the form (16) in a slightly different nota-
O-10v) T
tion, i.e.' instead of P . Thus one may say that the Delves

procedure, with the orthogonality requirement, is equivalent to double
ati ey wi L) R articyle Ator
perturbation theory with being the particular operator (18). A
) s o . T A
natural question at this polnt is théﬁﬁlg this in some sense 3

best choice? We will not pursue this question here

/ .
The choice (18) has been made by &¥anoff and Percus Phys.
Rev. 166, 1255 (1968) who also note that (19) can be re~
placed by (16). (18) has also been considered by Adams, J.
Chem. Phys. 45, 3422 (1966), in another counection. Evi-
dently this YWY s not g simple operator. In particular
it is not obvious what its other eigenfunctions are. How-
ever, referring to our earlier discussion, we can now say
for what it is worth that if €% is the lowest eigenvalue
of this W , then we will have ?% 2 D

TR,
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The procedure which we have called the Delves procedure
is only one of several that he has proposed (see the re-
ference given earlier). However, it seems to be about the
best of the lot. Some of his earlier efforts were essen-
tially based on the observation that &Y '-— glon is in a
somewhat d%éferent notatiogbﬂ W99 nstead of §Y9° ,‘§m>
instead of ¥ ), just the Y? that one derives from (XITI-20).
In view of the restrictions on theqih) which we discussed
there, it is not surprising that trying to use S§ " =p

\\\i? determine a '"best" ™ did not prove very satisfactory. /

/





